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Manipulating radiation is important for a variety of optoelectronic applications, such as on-chip lasers, energy-
efficient grating couplers, and antennas for light detection and ranging. Although designing and optimizing those
optoelectronic devices are usually believed to be an engineering-oriented task, recent research reveals that the
principles underlying radiation manipulation are closely connected to the concept of topology—the study of
properties that are invariant under continuous deformations. In this review, we summarize a series of advances
of the physics, phenomena, and applications related to radiation manipulation, in which topological concepts
were adopted. Radiation could carry energy escaping from the system, breaking the energy conservation. The non-
Hermiticity of such systems brings quite different physical consequences when comparing with the Hermitian
counterparts and, hence, also results in the emergence of many interesting and extraordinary phenomena. In
particular, it is found that the perfect trapping of light can still be realized in such non-Hermitian systems because
of the photonic realization of bound states in the continuum. The fundamental nature of bound states in the
continuum has been identified to be topological: they are essentially topological defects of the polarization
vector field in momentum space, depicted by a kind of topological invariant named topological charges.
Therefore, manipulation of radiation channels can be realized by controlling the topological charge evolution
in momentum space. It is also demonstrated that the photonic states accompanied with different topological
charges generate vortex beams with unique far-field radiation patterns, and ultra-fast switching of such vortex
beams is demonstrated according to this principle. The progresses of topological photonics upon light radiation
show that the topology is not just mathematical convenience for depicting photonic systems, but has brought
realistic consequences in manipulating light and will boost the applications of photonics and optoelectronics in
many aspects. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.403444

1. INTRODUCTION

Over the last decade, topological photonics [1–4] appeared as a
rapidly emerging field of research, in which topological ideas
are exploited to design and control the behavior of light, thus
boosting the discovery of fundamentally novel phenomena and
potentially revolutionary applications such as back-scattering-
immune waveguides [5,6], disorder-insensitive delay lines
[7,8], and topological lasers [9–11] with enhanced single-mode
stability.

As a branch of mathematics, topology deals with robust con-
served quantities that do not change when objects are contin-
uously deformed. The ideas of using topological concepts to
depict the geometric properties of physical systems originate
from the discovery of the integer quantum Hall effect
(IQHE) [12]. In this case, when two-dimensional (2D) elec-
trons whose energy sits within the energy gap between landau

levels interact with an external magnetic field, it gives rise to
quantized Hall conductance. Such quantization is related to
a topological invariant known as the Chern invariant
(TKNN invariant, after Thouless, Kohomoto, Nightingale,
and den Nijs [13]) that can be understood in terms of
Bloch wave functions as a surface integral of the Berry curvature
in momentum space over the Brillouin zone (BZ). Therefore,
the Chern invariant characterizes the quantized geometric
properties and the global behavior of wave functions on the
entire bulk energy band.

IQHE as well as the Chern invariant boosts the emergence
of topological insulators [14,15]: gapless conducting states exist
at the interfaces (edges or surfaces) when the Chern invariant
changes. Importantly, since the time-reversal (TR) symmetry
has been broken by the external magnetic field, these electronic
states are chiral, propagating in one direction along the

Review Vol. 8, No. 11 / November 2020 / Photonics Research B25

2327-9125/20/110B25-14 Journal © 2020 Chinese Laser Press

https://orcid.org/0000-0002-0200-0798
https://orcid.org/0000-0002-0200-0798
https://orcid.org/0000-0002-0200-0798
mailto:pengchao@pku.edu.cn
mailto:pengchao@pku.edu.cn
mailto:pengchao@pku.edu.cn
https://doi.org/10.1364/PRJ.403444


interface with the TR counterpart disallowed. The existence of
such unidirectional interface states is deeply related to the top-
ology of bulk bands, ruled by the bulk-boundary correspon-
dence [16–18], which can be understood in a brief picture:
since the integer topological invariant of individual bands per-
sists under perturbations or deformations unless the energy gap
is closed, the energy gap has to be vanished at the interface
between two domains whose topological invariants are differ-
ent, leading to the appearance of localized states stuck in the
interface. In this way, bulk-boundary correspondence is estab-
lished that describes how bulk topology affects the character-
istics of states at the boundaries.

In addition to the IQHE, another class of topological phases
was discovered in 2005 [19,20], which is the quantum spin
Hall effect (QSHE) [21]. When TR symmetry is preserved,
the total Chern invariants are trivial. However, once the
spin-orbit coupling is present, the wave functions and bulk en-
ergy band can be characterized by another nontrivial binary
(Z2) topological invariant [20,22]: spin-Chern numbers.
Since the two spin components of electrons are TR pairs, as
long as there are no spin-slip perturbations, the two spin com-
ponents are decoupled from each other, protected by the TR
symmetry, and independently behave as a Chern insulator with
paired and opposite Chern invariants, each encoded by the
spin-Chern number. As a result, at the interface between
two topologically inequivalent domains, the edge states in
two spin states are always paired as TR counterparts of each
other, propagating in opposite directions with spin-momentum
locking. This kind of systems is named quantum spin Hall
systems or Z2 topological insulators [23–29].

Inspired by theQSHE insulators protected by TR symmetry,
other topological phases under various symmetries are investi-
gated in condensed-matter physics, giving rise to different sym-
metry-protected topological (SPT) invariants [30]. Examples
include the valley Chern number in valleytronics [31–36],
spin-valley Chern number under spin-valley locking [37,38],
winding number [39,40] in the one-dimensional (1D)
Su–Schrieffer–Heeger (SSH) model [41] with chiral symmetry,
and mirror Chern number [42–44] resulting from crystalline
symmetry [45]. Although the definitions of these topological in-
variants are different, they all encode the topological phases of
the bulk energy band and result in gapless edge states that
are ruled by bulk-boundary correspondence under some relevant
symmetries. Note that SPT orders are conserved quantities only
when deformations do not break the relevant symmetry. Once
the symmetry is broken, SPT orders would fail to guarantee
the topological protection of the boundaries, and thus the gap-
less edge states would disappear even if the gap is still open.

Topological phases of matter, although rooted in con-
densed-matter systems, were proved to be a ubiquitous prop-
erty in a wide range of wave systems in 2008 [46]. After that,
topological ideas were expanded to other wave systems, for ex-
ample, photonic systems. As a classic optical analog of electrons
in quantum systems, the photonic system obtains the benefits
of flexibility and diversity, thus becoming a good candidate to
realize exotic topological models and investigate the fundamen-
tal mechanisms behind them. Following a realistic demonstra-
tion of the quantum Hall effect in photonics [5], further

progresses towards the implementation of topological models
have been achieved in the optical domain, giving rise to the
emergence of a new branch of physics as topological photonics.

However, compared to the physics of electrons in solids, there
are some unique features of photonic systems. Different from the
electrons that obey Fermi statistics, the photons are bosonic.
This fundamental distinction leads to impacts on many aspects.
First, photons are neutral boson with integer spin, which do not
experience the magnetic field directly. Second, photons acts dif-
ferently under TR operator T , satisfying T 2 � 1 rather than
T 2 � −1 [47,48]; the latter one ensuring Kramer’s degeneracy
for electrons. Therefore, photons have different topological clas-
sifications from electrons with respect to T . Most importantly,
photons are non-conserved particles with finite lifetimes in
most realistic optical devices, subjected to a variety of non-
equilibrium processes ranging from the gains and absorptions
of medium material to the radiation losses caused by open pho-
tonic boundaries or defects that break the topological protection
[49]. Namely, the realistic photonic systems are non-Hermitian
in general.

Obviously, the non-Hermiticity brought by these non-
equilibrium processes provides extra degrees of freedom
(DOFs) and gives rise to intrinsically different physics compared
to their Hermitian counterparts [50]. First of all, the non-
Hermitian system leads to complex energy bands in general, then
how to extend the concept of “band gap” fromHermitian system
becomes the first obstacle. In this case, real and imaginary parts
of eigenvalues co-exist but are not “gapped” at the same time. To
address this problem, several proposals have been made. For ex-
ample, “separable,” “isolated,” and “inseparable” bands are de-
fined based on their complex eigenvalues [51].

Second, the complex energy bands give rise to a particular
class of singularities: the exceptional points (EPs) [52,53]. At
the EPs, not only the eigenvalues but also eigenstates coalesce
and the system Hamiltonian becomes non-diagonalizable,
leading to a variety of fancy phenomena. For example, in a
whispering-gallery-mode (WGM) resonator,modes in the vicin-
ity of EPs are found to become chiral, which can be employed to
realize the unidirectional lasing [54]. Like itsHermitian counter-
parts, Dirac points [19,55,56] andWeyl points [57–59], along a
closed loop encircling the EP, nontrivial geometric phase is
gained, known as global Berry phase [60–62]. In parity (P)-time
(T ) symmetric systems [63,64], EPs are known as the sponta-
neously PT symmetry-broken points [65], resulting in sophis-
ticated geometry of energy bands. On the other hand, the
existence of EPs also results in anomalous behavior of edge states
[66]. Different from conventional Chern numbers in the
Hermitian system, several new kinds of winding numbers with
different physical implications are employed to characterize the
topology of EPs [51,66,67]. As the diagonalizability-broken
points of the system, EPs are generally considered to be sensitive
to parameters. Nevertheless, a kind of symmetry-protected
EPs are reported, characterized by topological defects of a vector
field defined by average values of Pauli matrices [68].

In addition to the EPs, another unique concept in non-
Hermitian physics is the spectral singularity [69,70], at which
the diagonalizability of the system Hamiltonian with a continu-
ous spectrum has been broken. In a scattering system, the
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transmission or reflection coefficients at spectral singularities
tend to infinity, and the persistent wave emission scattering dy-
namics are observed [71]. The input-direction-independent
unidirectional light wave propagation and single-direction las-
ing have also been demonstrated at spectral singularities [72].

Thirdly, a finite but arbitrarily large amount of eigenstates in
the non-Hermitian system are found to be localized at the
boundary even when the system has no disorders. This anoma-
lous localization, named the non-Hermitian skin effect
[73–77], has been discussed in the system with high-order
EPs [78] or open boundaries [74]. Moreover, bulk bands in
the non-Hermitian system are more sensitive to boundaries
due to the presence of the imaginary magnetic flux under
the periodical boundary condition [67,76]. These exotic phe-
nomena lead to the breakdown of conventional bulk-
boundary correspondence [74,79–81], which necessitates the
redefinition of related topological invariants as well as new clas-
sifications of non-Hermitian topological phases [82–84]. For
example, new topological invariants like half-integer charges as-
sociated with EPs [66,85], non-Bloch winding numbers [73],
and non-Bloch Chern invariants [74] were introduced to inter-
pret the geometries of non-Hermitian energy bands, and the
achievements on the classification of non-Hermitian topologi-
cal phases also have been made [86]. Recently, this novel
non-Hermitian skin effect and anomalous bulk-boundary cor-
respondence have been demonstrated in the non-Hermitian
quantum walk system experimentally [87,88].

In spite of many breakthroughs on the interplay between
band topology and non-Hermiticity, there is another regime
of topological photonics that studies the topology of radiation.
Optical radiations create leaky and open channels and thus
bring non-Hermiticity to photonic systems. It is found that
the bound states in continuum (BICs) [89–91], a ubiquitous
phenomenon in non-Hermitian wave systems, can be reinter-
preted as topological defects [92] of the polarization vector field
in momentum space, featuring a new kind of topological invari-
ant defined in the radiation field named topological charge.
Afterward, half-integer topological charges were observed, aris-
ing from the bulk Fermi arcs around paired EPs [93]. This cru-
cial observation shows that the features of bands and wave
functions (i.e., BICs and EPs) are connected to the topology
of the radiation field and then reveals a new perspective to in-
vestigate the non-Hermitian photonic system: we can observe
the far-field radiation to probe and exploit the topological
phases underlying the energy bands.

On the other hand, topological perspective also affords new
possibilities in manipulating radiation—the main topic of this
review. The characteristics of radiation in photonic systems can
be interpreted by topological concepts as well as controlled by
topological invariants, and thus they offer new perspectives and
mythologies in manipulating light. Considering that optical ra-
diation plays such a crucial role in varieties of photonic devices
ranging from lasers, sensors, to optical inputs/outputs (IOs), we
believe that these progresses would pave the way to radiation
manipulation and boost the emergence and development of
novel optoelectronic applications.

The rest of this review is organized as follows. In Section 2,
we provide an overview of the topological concepts in the

non-Hermitian system, with a brief review of topological invar-
iants in both Hermitian and non-Hermitian systems first and
the key fingerprints of non-Hermitian photonics, including
BICs and EPs. In Section 3, we summarize a series of recent
works on manipulating radiation from topological charge evo-
lution. In Section 4, the latest progresses on manipulating ra-
diation wave-fronts from topological concepts are discussed,
and we focus on the vortex/vector beam generation and
manipulation. In Section 5, we conclude our remarks.

2. TOPOLOGICAL CONCEPTS IN NON-
HERMITIAN PHOTONICS

A. Topological Invariants for Bulk Bands
Before starting the discussion upon the topology of radiation,
we first present a brief review of conventional topological in-
variants in band topology. The first topological invariants em-
ployed in condensed-matter physics, as the TKNN invariants
[13], are Chern numbers. In 2D systems, if the Hamiltonian
has the spatial periodicity, the geometry of the eigenstates in
momentum space can be described by the local Berry connec-
tion An�k� � ihun�k�j∇kjun�k�i and Berry curvature defined
in the Bloch states as Ωn�k� � ∇k × An�k�, in which un�k�
is the Bloch states at band n with crystal momentum k.
Note that Berry curvature can be also defined in other param-
eter space. Further, the Chern number can be defined as the
integral of Berry curvature over the whole first BZ:

Cn �
1

2

Z
BZ

d2kΩn�k�: (1)

Once the phase of the Bloch states cannot be continuously
defined, nonzero Berry curvature occurs, and Chern numbers
must necessarily be nonzero, too, according to Stokes’ theorem.
In this way, the Chern number encodes the geometric proper-
ties of the bands in the whole momentum space. As for the
conventional quantum Hall effect, the Chern numbers are al-
ways integers, while for systems with strong interaction and
disorders, fractional Chern numbers can be found to manifest
the fractional quantum Hall effect [94]. In three-dimensional
(3D) topological systems, the point degeneracy of energy
bands, Weyl points [57–59,95,96], also exhibit nonzero
Chern numbers. In higher-dimensional quantum Hall systems
with even numbers of spatial dimensions, for example, the four-
dimensional (4D) systems [97,98], new types of quantum Hall
effects emerge, characterized by second Chern numbers, in
contrast to first Chern numbers stated above in systems with
lower dimension.

Besides the Chern numbers, other topological invariants
were derived to depict the topological phases under certain
symmetries as SPT orders. For example, spin-Chern numbers
[19,20] are defined to describe the geometry of spin states,
which can be considered as Chern numbers accounting only
for one spin component. The whole spin-Chern numbers of
the entire band can be written as

Cs �
1

2
�C↑

n − C↓
n�, (2)

in which the superscript denotes the spin component. The co-
efficient 1/2 comes from the binary symmetry of the QSHE.
Similarly, valley-Chern numbers [31,32] can be considered as
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Chern numbers, accounting only for a single valley. In the
honeycomb lattice, which is the optical analog of graphene,
there are two different valleys at K and K 0 points in momen-
tum space; therefore, the valley-Chern numbers for a single val-
ley are defined as

CK ,K 0
n � 1

2

Z
HBZ

d2kΩn�k�: (3)

Here, HBZ denotes half-BZ, including the single valley at the
K or K 0 point. Then, the whole valley-Chern number can be
written as CV � CK

n − CK 0
n . Note that multi SPT orders can be

simultaneously applied to bulk bands to describe the topological
phase. For example, in the valley photonic crystal (VPC)
[37,38], incorporating the valley DOF and spin DOF results
in spin-valley Chern numbers [30], accounting for the geom-
etries of bulk bands of certain spin states in the single valley.

Obviously, all of these topological invariants are defined
upon wave functions, depicting the geometry of eigenstates
of bulk bands under certain symmetries. According to bulk-
boundary correspondence, these topological invariants also
govern the behavior of gapless eigenstates confined in the inter-
face between two topologically inequivalent domains. Similar
definitions of topological invariants can also be found in the
1D SSH model with chiral symmetry [39,40] and 3D lattice
with mirror symmetry [44,45].

When topological concepts are expanded from condensed-
matter systems to photonics, one major problem is the non-
Hermiticity, since gain and loss are more common in photons
than in electrons. For general non-Hermitian systems, conven-
tional bulk-boundary correspondence is disabled by non-
equilibrium processes [74,79–81], making edge modes no
longer strictly tied to bulk Chern numbers and giving rise
to some exotic phenomena such as anomalous localization of
eigenstates at boundaries due to the non-Hermitian skin effect
[73,75–77]. To address these problems, some researchers re-
vealed that the breakdown of conventional bulk-boundary cor-
respondence stems from the non-Bloch-wave nature [74,81] of
eigenstates in the open-boundary system. They introduced
non-Bloch Chern numbers defined in the 2D generalized
BZ with complex-value wave vectors [74]:

Cn �
1

2πi

Z
T̃ 2

d2k̃ϵi,jh∂iuLn�k̃�j∂juRn�k̃�i, i, j ∈ �x, y�: (4)

Here, k̃ denotes the complex-valued momentum, parame-
trizing a generalized BZ T̃ , deformation from the standard
BZ T into complex spaces. Coefficient ϵi,j � δi,j. uRn�k̃�
and uLn�k̃� are right and left eigenvectors of the non-Bloch
Hamiltonian, obeying the bi-orthogonal normalization condi-
tion huLmjuRni � δmn. In this proposal, the revised Chern
number can be considered as the conventional Chern number
of the non-Bloch Hamiltonian H̃ �k̃� rather than conventional
H �k�. The same non-Bloch Chern numbers can also be applied
to the 1D non-Hermitian SSH model. On the other hand,
some other researchers revealed that EPs can give rise to similar
anomalous localization effects [78], and revised Chern numbers
associated with EPs are employed to give a geometrical inter-
pretation to the localized states.

B. Features of Optical Radiation and Topological
Charges
In all of the non-equilibrium processes affecting the behavior of
photons in non-Hermitian systems, optical radiation attracts
much attention since it governs the energy exchange in most
of the realistic optoelectronic devices. One typical case of such
open photonic systems is the photonic crystal (PhC) slabs
[99,100] shown in Fig. 1(a). As a general and versatile platform,
PhC slabs afford varieties of photonic applications, such as fil-
ters, lasers, waveguides, and cavities, in which optical radiation
plays a crucial role as channels for energy in and out.

Beyond the Hermitian framework, there are several unique
features of non-Hermitian systems due to optical radiation,
which do not have the Hermitian counterparts. The first
one is the BICs [89–91]—the modes whose lifetimes remain
infinite with open radiation channels and allowable couplings
to the continuum. In literature, photonic BICs were thought to
be grouped into two types: BICs with symmetry protection and
tunable BICs robust in momentum space. At first, the lack of a
comprehensive picture in understanding the radiation had re-
sulted in a challenge for unifying two types of BICs. Some
semi-analytical methods for non-Hermitian photonics were
proposed to make clear the fundamental mechanisms of
BICs [101–105], and the nature of BICs in PhC slabs has been
identified to be topological; they are essentially topological de-
fects [92] of the polarization vector field in momentum space
[106,107] [Figs. 1(b) and 1(c)]. Topological defects are indeed
ubiquitous phenomena: examples range from quantum vortices
in superfluids to singular optical beams [108], which are char-
acterized by the nontrivial winding patterns of system param-
eters (velocity, phase, or polarization) in real space. For the
BICs in open photonics specifically, the topological charge
(q) carried by topological defects in momentum space is defined
as the winding of polarization directions around a specific state
as [106]

q � 1

2

I
C
dk · ∇kθ�k�: (5)

Here, θ�k� is the angle of major axes of the polarization vec-
tor that depicts the radiation field ψ�k� � arg�ex x̂ � iey ŷ�, and
C is a closed simple path in momentum space that goes around
the state in the counterclockwise (CCW) direction.
Topological charges defined in radiation have a similar
form to the Chern numbers defined in bulk bands, and they
depict the geometry of far-field radiation; once the phase of
polarization cannot be continuously defined, nonzero integer
topological charges of q ∈ Z emerge, generating polarization
singularities in momentum space, at which the polarization
of radiation cannot be defined, and thus the radiation itself can-
not exist, which are exactly the BICs. Besides the non-
Hermitian systems with open channels, BICs can also be real-
ized in PT -symmetric systems.

As topological invariants, topological charges are conserved
and quantized quantities; they continuously evolve in momen-
tum space and cannot suddenly disappear unless one charge
drops out of the light cone or annihilates with another charge
with the opposite sign. Recent experimental advances have con-
firmed the existence of topological charges and the topological
interpretation of BICs by directly observing the polarization
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vortices [Fig. 1(e)] as well as the vanishing of Fano reflection
around the vortex center [109,111]. The robustness of topo-
logical charges is also verified by annihilating a BIC state with
C2 asymmetry [110], shown in Fig. 1(d). It is found that the
integer topological charge carried by the original BIC splits into
a pair of half-integer charges carried by two circularly polarized
(CP) states with opposite helicities, as q � 1 � 1∕2� 1∕2.
The CP states carrying half-integer topological charges are
denoted as C-points.

Another unique feature of the non-Hermitian system is the
EPs, at which states are completely degenerate, in both eigen-
vectors and eigenvalues. EPs have been widely investigated in
the PT -symmetric systems [65], at which the PT symmetry is
spontaneously broken. It was shown that encircling an isolated
EP generates a nontrivial global Berry phase [60–62,112],
whose sign depends on the loop direction, showing a chiral
behavior [112,113]. Recently, researchers observed the missing

dimension at EPs in both photonic and acoustic wave systems
[114], which comes from the reduction of geometric multiplic-
ity due to eigenspace collapse.

EPs can be generated from conventionally degenerate points
in Hermitian systems, and the energy bands around EPs have
complex geometric properties. For example, in contrast to con-
ventional cone-like dispersion, geometry of energy bands
around Dirac points in the honeycomb lattice with PT pertur-
bations becomes tachyon-like Riemann surfaces [115]; Dirac
points are spawned into an exceptional ring full of non-isolated
EPs. An exceptional ring in non-Hermitian 3D topological sys-
tems spawned from the Weyl point was also proposed [116].

In addition to the PT system, optical radiation in photonic
systems with open channels can also result in EPs [left and
middle panels, Fig. 2(a)]. It has been confirmed that, an excep-
tional ring can be generated from an accidental degenerate point
of energy bands in 2D topologically trivial photonic systems

Fig. 1. Topological charges: topological nature of BICs and C-points [106,109,110]. (a) Schematic of radiation field decomposition for reso-
nances of a PhC slab. The polarization vector �cx , cy� is the projection on the x−y plane of electric field huki of the radiative wave. A resonance turns
into a BIC if and only if cx � cy � 0. (b) Nodal lines of cx and cy. At the crossing point, polarization of resonance becomes undefined, where the
BIC resides. (c) Two possible configurations of the polarization field near a BIC, giving rise to topological charges of q � �1 and q � −1.
(d) Formation of half-integer charges carried by C-points split from an integer topological charge of a BIC. R(L)H, right (left) handed.
(e) Measured polarization angles α in momentum space. A polarization vortex is visible in the map of α, denoted as green circles representing
the location of BICs. Panels (a)–(c) are reproduced with permission from [106], copyright 2014 American Physical Society (APS); (d) is reproduced
with permission from [110], copyright 2019 American Physical Society (APS); (e) is reproduced with permission from [109], copyright 2018
Springer Nature.
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under C4 symmetry [113,117,118], giving rise to some counter-
intuitive propagating properties such as zero-index materials
[117,119].

Like paired Weyl points connected by a surface Fermi arc in
their surface projections [120–123], paired EPs, the non-
Hermitian counterparts of Weyl points, are connected by bulk
Fermi arcs, corresponding to the intersections of two Riemann
sheets associated with the EPs [right panel, Fig. 2(a)]. This
exotic phenomenon was observed in non-Hermitian photonic
systems in 2018 [93], in which a pair of isolated EPs was real-
ized in 2D open PhC slabs with C2 symmetry, and the bulk
Fermi arcs were successfully observed from far-field radiation,
as shown in Fig. 2(b). In this seminal work, it is confirmed that
the radiation channel in open photonic systems provides a
natural and effective way to observe and exploit the topology
of energy bands.

Moreover, such work also showed that a half-integer topo-
logical charge in the polarization of far-field radiation is discov-
ered around the bulk Fermi arc, shown in Fig. 2(c). Different

from the integer topological charges associated with BICs, these
half-integer topological charges are direct consequences of EPs,
revealing the non-Hermitian topology of the bulk bands. It is
revealed that there is an intrinsic connection between the band
topology and the topology of far-field radiation. It should be
emphasized that special resonant states (BICs and C-points)
and nonzero Berry phases (EPs) can both be related to polari-
zation singularities in radiation, but only the latter is topologi-
cally nontrivial upon the energy band, corresponding to
nonzero Chern numbers. In former cases, the bulk wave func-
tions are always well-defined with continuous phases except for
extra degeneracies.

3. MANIPULATION RADIATION
CHARACTERISTICS FROM TOPOLOGICAL
CHARGES EVOLUTION

Regardless of where the topological charges originate from, they
encode the geometry of the radiation field and depict the

Fig. 2. Bulk Fermi arc and half-integer topological charge [93]. (a) Left: Dirac points in 2DHermitian PhC as the accidental degeneracy under C2

symmetry; middle: paired EPs in 2D non-Hermitian PhC slab spawn from Dirac points; right: examples of the isofrequency contours, including the
open bulk Fermi arc connecting two EPs (middle panel), and closed contours at higher (upper panel) or lower (lower panel) frequencies.
(b) Numerically simulated and experimentally measured isofrequency contours at three representative wavelengths. The bulk Fermi arc appears
at 791.0 nm (middle panels), when the isofrequency contour becomes open-ended. (c) Experimental demonstration of the half-integer topological
charges around the bulk Fermi arc. Left: schematic of polarization winding along a loop enclosing an EP; middle and right: experimental and
simulated results of the polarization information along the isofrequency contour, exhibiting a half-integer topological charge of polarization vectors.
Panels (a)–(c) are reproduced with permission from [93], copyright 2018 American Association for the Advancement of Science (AAAS).
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characteristics of radiation. Therefore, their evolution in mo-
mentum space also offers the opportunity in manipulating ra-
diation. In this section, some experimental works are
introduced to give a brief summary of recent progresses in
manipulation of radiation channels using topological charges.
In these breakthroughs, the decay rates and directionality of the
radiations are regulated through topological charge evolution in
momentum space, resulting in freely controlled radiation chan-
nels to be open or closed.

A. Suppress Out-of-Plane Scattering by Merging
Integer Topological Charges
The first example of manipulation on radiation channels is the
merging BICs reported by Jin et al. [124]. Since the lifetime of
BICs can be infinity in theory, they are good candidates for
realizing on-chip light trapping [125–127]. However, in real-
istic devices, the quality (Q) factors of BICs are limited to about
1 × 104 [125], much lower than that of other high-Q resona-
tors operating outside the continuum. The energy consump-
tion mainly comes from the inevitable scattering losses due
to random fluctuations induced by fabrication imperfections,
which are the major reason resulting in Q degrading.

To address this problem, the work proposed to use a par-
ticular topology configuration to protect the high-Q resonance
from out-of-plane scattering, shown in Fig. 3(a). Considering a
square lattice PhC slab with nine BICs [left panel, Fig. 3(a)],
each BIC is represented by polarization singularity with integer
topological charge of q � �1, respectively. Among these nine
BICs, one pins at the center of the BZ (second Γ point), owing
to the symmetry, while the remaining eight continuously evolve
along the highly symmetric lines in momentum space, due to
the conservation law of topological charges. By continuously

tuning a given structural parameter, lattice periodicity a for in-
stance, the eight off-Γ BICs keep moving and merging towards
the BZ center [middle panel, Fig. 3(a)] before eventually an-
nihilating into a single isolated BIC with a charge of q � �1 at
Γ point [right panel, Fig. 3(a)]. This special topological con-
figuration is named merging BICs.

The topological charge configuration determines the radia-
tion loss of nearby resonances, and further gives rise to a bound
to the scattering loss. In contrast to an isolated topological
charge with the quadratic scaling rule of radiation losses
(k2, k is the momentum distance away from the charge),
the topological consequence of merging BICs results in a differ-
ent scaling rule of k6, shown in Fig. 3(b). The dramatic pro-
motion of the scaling rule from k2 to k6 results in an
improvement of Q of resonances around the Γ point and sig-
nificant suppression of the scattering losses. Therefore, merging
BICs can raise the upper limit of Q factors achievable in prac-
tice. The experiment proves such theoretical findings: the high-
est Q observed on the merging BICs sample is 4.9 × 105 [left
panel, Fig. 3(c)], 12 times higher than the isolated BIC sample
fabricated on the same wafer through the same process, whose
highest observed Q is about only 4.0 × 104 at the same k-point
[right panel, Fig. 3(c)].

B. Realize Unidirectional Emission from Merged
Half-Integer Charges
Another example of manipulating radiation is the realization of
unidirectional guided resonances (UGRs) reported by Yin et al.
[128]. Unidirectional emission is important for varieties of
optoelectronic applications, since it can effectively improve
the energy efficiency of those key devices, such as grating cou-
plers [129] and PhC surface emitting lasers (PCSELs) [126].

Fig. 3. Manipulation radiation characteristics from topological charges [124,128]. (a) Topological charges evolution for merging BICs. Middle
panel represents the configuration of merging BICs. (b) Scaling rules of Q factors along with k-points for isolated BICs and merging BICs.
(c) Experimentally measured Q factors for merging BICs (left) and isolated BICs (right) under the same fabrication process. (d) Topological charge
evolution for UGRs. Charges with q � �1∕2 in the middle panel denote the C-points corresponding to CP states with opposite helicity. Right
panel represents the configuration of UGRs. (e) Profile of electric field component Ey of UGR. (f ) Experimental and simulated results of downward
Q factors around UGR. (g) Experimentally measured trajectories of two half-integer topological charges that evolve along with the varied width of air
bars of 1D PhC slab w. The crossing point of two trajectories verifies the existence of UGR. Panels (a)–(c) are reproduced with permission from
[124], copyright 2019 Springer Nature; panels (d)–(g) are reproduced with permission from [128], copyright 2020 Springer Nature.
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Since conventional mirrors are usually bulky, complex, disper-
sive, and dissipative, unidirectional emission without a mirror
becomes an important feature in many scenarios [130].

Recently, it was found that unidirectional out-of-plane ra-
diation can be realized by manipulating the evolution of topo-
logical charges, shown in Fig. 3(d). Starting from an off-Γ BIC
in a 1D silicon PhC slab, it carries integer topological charges
upon both upward and downward radiation [left panel,
Fig. 3(d)]. Then, by tilting the sidewall, C2 asymmetry and
vertical-mirror asymmetry are induced, and the integer charges
are split into paired half-integer charges protected by y-mirror
symmetry on both the top/bottom sides of the slab [middle
panel, Fig. 3(d)]. Since the vertical symmetry has been broken,
the downward radiation channel is decoupled completely from
the upward one, which means that the evolution of paired
half-integer topological charges on the two sides of the slabs
can be controlled independently, forming different topological
configurations.

By continuously tuning the tilted angle of side walls, a par-
ticular topological configuration was realized in which the in-
teger topological charge only exists at the downward radiation.
Specifically, when gradually increasing the tilted angle, paired
half-integer charges evolve in momentum space that follow dif-
ferent trajectories for the upward/downward radiations. For a
tilted angle of 75°, the paired half-integer charges merge into an
integer charge in downward radiation [right panel, Fig. 3(d)],
while they keep departing from each other in upward radiation.
In this way, the downward radiation channel is closed owing to
integer topological charges, but the upward radiation channel
remains open, thus generating a particular resonance with uni-
directional emission named UGR, whose profile is shown in
Fig. 3(e).

The radiation characteristics of UGRs are observed by di-
rectly measuring the asymmetric ratio η � γt∕γb between up-
ward and downward radiation. Here, γt ,b are decay rates in
upward and downward radiation channels. At the UGR, the
measured asymmetric ratio is as high as 27.7 dB, equivalent
to Q factor Qb � 1.6 × 105, which only accounts for down-
ward radiation [Fig. 3(f )]. These results indicate 99.8% of
the energy radiates through the upward channel, which exactly
confirms the unidirectional emission. The evolution of topo-
logical charges was directly observed by measuring the C-points
from the downward radiation [Fig. 3(g)]. The realization of
UGRs is the first, to the best of our knowledge, example of
closing given radiation channels from the topology perspective,
which is useful for many optoelectronic devices, including light
detection and ranging (LIDAR) antennas, PCSELs, and quan-
tum cascade lasers.

4. MANIPULATING RADIATION WAVE-FRONTS
FROM TOPOLOGICAL CONCEPTS

Besides manipulating the emission power and directionality of
radiation, the wave-front of far-field radiation, for example, the
polarizations and phase patterns, can also be manipulated from
topological concepts. In this section, we focus on several recent
progresses of using topological ideas in generating vortex
beam—a spiral wave-front carrying nonzero orbit angular mo-
mentum (OAM) [131], which paves the way for utilizing rich

DOFs of light for many applications, such as optical commu-
nication multiplexing, photonic signal processing, and super-
resolution microscopy.

A. Generate Vortex Beams from Topological Charges
The integer topological charges, namely the winding of polari-
zation vectors in radiation, provide a natural and flexible way to
generate vortex/vector beams in chip-scale. Years ago, vortex
beams with sophisticated patterns were realized by utilizing
high-order topological charges in PCSELs, in which the wind-
ing numbers of the polarization vectors are determined by the
orders of the integer charges [132]. In this work, the second Γ
point with different rotational symmetries (C4 and C6 sym-
metry) and the high-order Γ point (Γ5) are employed to pro-
duce topological charges q � 1, 2, 3, giving rise to vortex beams
with quantum numbers of OAM l � 1, 2, 3.

Recently, it is revealed that the ultra-fast dynamically con-
trolled vortex beam based on microlasers can also be realized by
exploiting topological charges. As reported by Huang et al.
[133], the lasing is based on a perovskite metasurface which
is fabricated from a 220 nm MAPbBr3 film sandwiched by
a glass substrate (nsub � 1.5) and polymethyl methacrylate
(PMMA) cladding (npmma � 1.49) in a square lattice spacing
of 280 nm [top panel, Fig. 4(a)]. The BIC with q � 1 resides at
the Γ point and is exhibited as a vortex. Through changing the
spatial profile of pumping light from a circle to an ellipse [top
panel, Fig. 4(b)], the symmetry required by the BIC breaks
because the optical pumping induced gain actually corresponds
to the imaginary part of the refractive index. As a result, the
vortex lasing beam (a signature of BIC lasing) switches to a lin-
early polarized beam [bottom panel, Fig. 4(b)] or vice versa,
with switching time of 1 to 1.5 ps, and the switching takes
remarkably low energy consumption. The results indeed show
the topological charge creates unique ultra-fast and practical
useful beam manipulation.

More specifically, through changing the pumping profile spa-
tially from a circle to an ellipse, the fourfold symmetry required
by the integer topological charges is broken. As a result, the in-
teger topological charge no longer exists, and the vortex lasing
beam disappears and switches to a linearly polarized beam.
Since the profile of external pumping light is flexible to control,
transition from vortex lasers to linear lasers or vice versa can be
realized by destroying or restoring integer topological charges
through modulating the redistribution of the optical gain profile.
In experiments, the fork-shaped self-interference pattern is ob-
served to verify this vortex lasing under the circular gain profile
[bottom panel, Fig. 4(a)]. When another pumping light with the
same profile is overlapped with but slightly deviated from the
former one, it is equivalent to an ellipse-shaped gain profile.
Then, it is observed that the emission profile switched from ra-
dial donuts to two linearly polarized lobes in 1 to 1.5 ps [top
panel, Fig. 4(c)]. By applying the third pumping light to recover
the C4 symmetry, the laser beam returns to vortex beam also in a
few picoseconds [bottom panel, Fig. 4(c)].

It is noteworthy that, besides the lasers, passive devices are
also capable of generating vortex beams. Recently, a diffraction-
resistant, even-order quasi-Bessel beam has been demonstrated
based on topological charges in passive PhC upon a free-
standing silicon nitride slab, reported by Wang et al. [134].
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By applying a CP incident beam to the PhC slab with integer
topological charges q, the output vortex beam with OAM of
l � 	2q is obtained, shown in Fig. 4(d). Owing to the con-
servation law of topological charges, the OAM carried by the
output beam is completely determined by the topological
charges of incidence and optical resonance [Fig. 4(e)].
Therefore, the output OAM can be switched by changing
the wavelength of incidence that selectively couples to different
orders of Γ points, at which their topological charges q are dif-
ferent [Fig. 4(f )].

B. Generate Vortex Beams from Spin-Momentum
Locking
In spite of the topological charges upon radiation polarization
vectors, tunable vortex beams can also be realized based on
other topological concepts, i.e., spin-orbit locking. In work

reported by Yang et al., a microlaser working at a topologically
protected edge state with spin-momentum locking is employed
to help an out-of-plane vortex beam emerge in a non-
Hermitian PhC slab [135].

Specifically, the work starts from a honeycomb lattice, with
doubly degenerate Dirac cones at the Γ point. By deforming
the honeycomb lattice into a triangular lattice with hexagonal
clusters of six neighboring sites, the degeneracy of the two
Dirac cones is lifted, opening a topologically nontrivial bandgap
around the Γ point. As an optical analog of QSHE, two Dirac
cones at the Γ point in such a triangle lattice correspond
to spin-up and spin-down states as pseudo-TR pairs due to
different in-plane symmetries [136]. Therefore, a photonic
Z2 insulator was realized in such a lattice with topologically
nontrivial interface between two PhC domains, which are dis-
tinct in topology but share a common bulk bandgap [bottom

Fig. 4. Generate vortex beams based on topological charges [133,134]. (a) Top: schematic illustration of the designed perovskite metasurface
pumped by laser light, generating a vortex beam based on topological charge; bottom: donut-shaped emission profile and inverted fork-shaped self-
interference pattern of output vortex beam. (b) Dynamic control of output beam based on manipulating the optical gain profile. Schematics of the
experiments (top) and experimentally measured emission patterns (bottom). The emission profile switches to two lobes (right panels) from the donut
shape (left panels) when the profile of the pumping light is changed from a circle to an ellipse. (c) Top: transition from a donut beam to a linearly
polarized two-lobe beam. Insets are corresponding emission profiles of the output beam; bottom: transition from a donut beam to a two-lobe beam
and back, within a picosecond-scale transition time. (d) Schematic illustration of a passive vortex beam generator based on a PhC slab. (e) Far-field
patterns and interferograms of output beams under different incident polarization. (f ) Polarization winding of topological charge q � −2. (g) Vortex
beam with OAM of l � 4 based on topological charge of q � −2. Panels (a)–(c) are reproduced with permission from [133], copyright 2020 AAAS;
panels (d)–(g) are reproduced with permission from [134], copyright 2020 Springer Nature.
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panel, Fig. 5(a)]. Inside the bandgap, paired helical edge
states appear with spin-momentum locking, namely that the
edge states with different spins would propagate in opposite
directions.

Further, an X-shaped laser cavity is demonstrated by using
such a topological interface, shown in the top panel of Fig. 5(a).
Due to the finite cavity size, the paired edge states allowed in-
side the bandgap become discrete in the energy band, with dif-
ferent quantized quantum numbers of OAM l [top panel,
Fig. 5(c)]. In this way, each pair of edge states can be denoted
as |l , σi, in which σ denotes the spin angular momentum

(SAM), with two quantum numbers of spin-up (�) and
spin-down (−). Clearly, the signs of the spin and OAM are
locked due to spin-momentum locking.

Different from the conventional edge states around Dirac
cones at K and K 0 points under the light cone, here the edge
states reside around the Γ point that is embedded in the light
cone, which implies that the edge states are intrinsically radi-
ative into the continuum and can be probed via far-field radi-
ation, shown in Fig. 5(b). The circular polarization and OAM
of the radiation beam thus correspond to the pseudo-spin
and OAM of the edge modes owing to angular-momentum

Fig. 5. Generate vortex beams based on spin-momentum locking [135,137]. (a) Top: scanning electron microscope (SEM) image of a topological
vortex laser with an X-shaped PhC cavity (red lines). The corresponding spin direction of the cavity mode is indicated by the arrows. Bottom:
zoomed-in SEM image of the topological interface. Red line, topological interface; blue hexagon, unit cell in the topological PhC; orange hexagon,
unit cell in the trivial PhC. (b) Schematic illustration of angular-momentum conservation of the CP vortex beam with respect to the spin-
momentum-locking edge states. (c) Energy band structure of the discrete edge states (red and green dots) with surrounding bulk bands (gray
lines). Red dots, spin-up edge states; green dots, spin-down edge states. (d) Pattern of self-interference of the output beam, verifying OAM of
l � −2. (e) SEM images of the vortex beam generator based on WGMs in the ring resonator. (f ) Non-Hermitian interactions and corresponding
emission pattern. Top panels: without non-Hermitian interactions, no phase winding exists in the output beam; middle and bottom panels: with
unidirectional non-Hermitian interaction, the self-interference pattern exhibits an inverted fork shape, verifying the vortex beam. (g) Five channels of
different OAMs are realized in microlasers shown in (e). Panels (a)–(c) are reproduced with permission from [133], copyright 2020 American
Physical Society (APS); panels (d)–(g) are reproduced with permission from [134], copyright 2020 AAAS.
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conservation. Because of the protection of pseudo-TR sym-
metry, two edge states are completely decoupled from each
other. By designing the pumping light, only one edge state
can be chosen to lase. The bottom panel of Fig. 5(c) gives
the radiation features of the lasing edge mode j−2,�i. The
emission profile shown in Fig. 5(d) exhibits a donut shape,
and the self-interference patterns are fork-shaped, indicating
a vortex beam with OAM of l � −2. Lasing of the TR counter-
part j2, −i definitely gives rise to a vortex beam with OAM
of l � 2.

Another work reported by Zhang et al. demonstrated a tun-
able topological charge vortex microlaser on spin-orbit locking
WGMs [137]. As shown in Fig. 5(e), a microlaser system con-
sists of a microring resonator that is coupled to a waveguide with
two control arms. By tuning the geometry of the waveguide,
spin-orbit interaction is manipulated and consequently couples
the right-hand (spin-down: ↓) and left-hand (spin-up: ↑) circular
polarizations with the clockwise (CW, ↻) and CCW (↺)
modes, respectively [Fig. 5(f)]. ↺ and ↻ denote the signs
of OAM. The spin-orbit-locking WGMs are denoted as
jjl j,↺, ↑i and jjl j,↻, ↓i, in which the quantum number l re-
fers to the OAM of output emission.

In order to extract the OAM into the far-field radiation,
periodic angular scatters on the inner sidewalls are designed
to make WGMs radiative. Therefore, the order of WGM itself
N and the number of scatters M together determine the total
conserved angular momentum J � sgn�σ��N −M �, where σ is
the quantum number of SAM. For appropriately designed scat-
ters, a total angular momentum of jJj � 2 is achieved, consist-
ing of an SAM of jσj � 1 and OAM of jl j � 1.

In the absence of non-Hermitian interaction, two spin-
orbit-locking WGMs are degenerate. When they lase simulta-
neously, no notable phase-discontinuity was observed in the
off-center self-interference pattern, indicating no phase wind-
ing in the output beam [top panels, Fig. 5(f )]. By contrast, uni-
directional non-Hermitian coupling is applied by selectively
pumping one control arm, which breaks the helical symmetry
and the degeneracy of WGMs. As a result, only one chiral
WGM state is pumped to lase, and the other is suppressed.
The patterns of far-field emission and self-interference pattern
are shown in the middle panels of Fig. 5(f ), when the right
control arm is illuminated. An interference pattern of paired
inverted forks verifies the OAM of l � 1. Similarly, when
the left control arm is selectively pumped, the orientation of
the fork shape is reversed, indicating an OAM of l � −1 [bot-
tom panels, Fig. 5(f )].

Moreover, the dynamic reconfiguration of OAM was also
demonstrated in this vortex beam generator. By applying a
movable radial polarizer to filter out the lasing light, the beam
is transferred from CP to linear polarization, and thus the SAM
is tuned to zero accordingly. Since the total angular momentum
must be conserved, the lasing state is switched from
jl � �1, σ � �1i to jl � �2, σ � 0i, and high-order
OAMs are achieved. As a result, this reconfigurable vortex mi-
crolaser provides five channels of different OAMs in the range
of l � �2, �1, 0, and all of these OAM states work at the
same wavelength, shown in Fig. 5(g). Similar to the work men-
tioned above, the switching time is, in principle, restricted by

the optical response time of semiconductor material, which
could be potentially in the picosecond scale.

5. SUMMARY AND OUTLOOK

Non-Hermitian topology is a rapidly emerging field with grow-
ing literature and progress through the effort of the entire re-
search community, including new phenomena, theories,
methods, and applications, ranging from fundamental under-
standing of the roles of gain/loss, manipulating the radiations,
to the novel devices for vortex beam generation, and others.
More future possibilities and advances are expected as well.

From the view of science, it is essential to build up a com-
prehensive theoretical framework for non-Hermitian topology.
Given that many anomalous phenomena in a variety of non-
Hermitian systems were discovered and explained from different
theoretical treatments, a lack of unified and consistent theories of
non-Hermicity, in particular how the radiation raises and repre-
sents unique topology landscapes, is still an obstacle preventing
deeper understanding of the physics and realizing of practical
applications. For instance, both the BICs and EPs carry topo-
logical charges in their far-field radiation, but only the latter ones
are associated with nontrivial Chern numbers. Therefore, an in-
terconnection between the band topology and the topology
upon the radiation is still waiting for exploration. Besides, from
the view of technology, high-order topological charges that reside
at high-order Γ points or higher crystalline symmetries other
than C4 symmetry may have much potential in bringing more
DOFs for manipulating the radiation and boosting the applica-
tions such as ultra-high-Q cavities, ultra-sensitive sensors, and
multi-channel OAM multiplexing.

To sum up, since the radiation channels allow the light in
and out, there is no doubt that the radiation will bring funda-
mental differences and extra DOFs from topological perspec-
tives compared to its Hermitian counterparts, while, at the
same time, offering a natural channel for probing and exploit-
ing the intrinsic band topology. In this review, we have sum-
marized a part of new phenomena corresponding to the
interplay between the non-Hermiticity and topology and em-
phasized several breakthroughs in manipulating radiation from
the perspective of topological concepts. We believe that further
collision and merging between conventional topological con-
cepts and non-Hermiticity will inspire new ideas in utilizing
topological properties for photonic and optoelectronic
applications.
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